Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Immunol ; 25(5): 916-924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698238

RESUMO

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Assuntos
Linfócitos B , Neoplasias da Mama , Vigilância Imunológica , Humanos , Feminino , Neoplasias da Mama/imunologia , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T/imunologia , Monitorização Imunológica , Sequenciamento do Exoma , Antígenos de Neoplasias/imunologia , Metástase Neoplásica , Células Clonais
2.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649964

RESUMO

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Assuntos
Neoplasias da Mama , Mutação , Fenótipo , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Povo Asiático/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Sequenciamento do Exoma , Pessoa de Meia-Idade , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Perfilação da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais/genética , Análise por Conglomerados , Estudos de Coortes , Adulto , Malásia/epidemiologia , Idoso , Variações do Número de Cópias de DNA
3.
Nat Metab ; 5(11): 1870-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946084

RESUMO

Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Ácido Pantotênico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Vitaminas
4.
EMBO Mol Med ; 15(6): e16505, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161793

RESUMO

Analysis of circulating tumor DNA (ctDNA) to monitor cancer dynamics and detect minimal residual disease has been an area of increasing interest. Multiple methods have been proposed but few studies have compared the performance of different approaches. Here, we compare detection of ctDNA in serial plasma samples from patients with breast cancer using different tumor-informed and tumor-naïve assays designed to detect structural variants (SVs), single nucleotide variants (SNVs), and/or somatic copy-number aberrations, by multiplex PCR, hybrid capture, and different depths of whole-genome sequencing. Our results demonstrate that the ctDNA dynamics and allele fractions (AFs) were highly concordant when analyzing the same patient samples using different assays. Tumor-informed assays showed the highest sensitivity for detection of ctDNA at low concentrations. Hybrid capture sequencing targeting between 1,347 and 7,491 tumor-identified mutations at high depth was the most sensitive assay, detecting ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm). Multiplex PCR targeting 21-47 tumor-identified SVs per patient detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential as a clinical assay.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Tumoral Circulante/genética , Mutação
5.
Breast Cancer Res ; 25(1): 17, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755280

RESUMO

BACKGROUND: Breast cancer is one of the three most common cancers worldwide and is the most common malignancy in women. Treatment approaches for breast cancer are diverse and varied. Clinicians must balance risks and benefits when deciding treatments, and models have been developed to support this decision-making. Genomic risk scores (GRSs) may offer greater clinical value than standard clinicopathological models, but there is limited evidence as to whether these models perform better than the current clinical standard of care. METHODS: PREDICT and GRSs were adapted using data from the original papers. Univariable Cox proportional hazards models were produced with breast cancer-specific survival (BCSS) as the outcome. Independent predictors of BCSS were used to build multivariable models with PREDICT. Signatures which provided independent prognostic information in multivariable models were incorporated into the PREDICT algorithm and assessed for calibration, discrimination and reclassification. RESULTS: EndoPredict, MammaPrint and Prosigna demonstrated prognostic power independent of PREDICT in multivariable models for ER-positive patients; no score predicted BCSS in ER-negative patients. Incorporating these models into PREDICT had only a modest impact upon calibration (with absolute improvements of 0.2-0.8%), discrimination (with no statistically significant c-index improvements) and reclassification (with 4-10% of patients being reclassified). CONCLUSION: Addition of GRSs to PREDICT had limited impact on model fit or treatment received. This analysis does not support widespread adoption of current GRSs based on our implementations of commercial products.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Prognóstico , Mama/patologia , Modelos de Riscos Proporcionais , Expressão Gênica
6.
Br J Cancer ; 127(7): 1332-1339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35864159

RESUMO

BACKGROUND: Endocrine therapy forms the backbone of adjuvant treatment for oestrogen-receptor-positive (ER+) breast cancer. However, it remains unclear whether adjuvant treatment improves survival rates in low-risk patients. Low intra-tumour heterogeneity (ITH) has been shown to confer low risk for recurrent disease. Here, it is studied if chromosomal copy-number ITH (CNH) can identify low-risk ER+, lymph-node-negative breast cancer patients who do not benefit from adjuvant endocrine therapy. METHODS: Lymph-node-negative ER+ patients from the observational METABRIC dataset were retrospectively analysed (n = 708). CNH was determined from a single bulk copy-number measurement for each patient. Survival rates were compared between patients that did or did not receive adjuvant endocrine therapy for CNH-low, middle and high groups with Cox proportional-hazards models, using propensity-score weights to correct for confounders. RESULTS: Adjuvant endocrine therapy improved the relapse-free survival (RFS) for CNH-high patients treatment (HR = 0.55), but not for CNH-low patients treatment (HR = 0.88). For CNH-low patients adjuvant endocrine therapy was associated with impaired OS (HR = 1.62). CONCLUSIONS: This retrospective study of lymph-node-negative, ER+ breast cancer finds that patients identified as low risk using CNH do not benefit from adjuvant endocrine therapy.


Assuntos
Neoplasias da Mama , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Variações do Número de Cópias de DNA , Estrogênios/uso terapêutico , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Receptores de Estrogênio , Estudos Retrospectivos
7.
Nat Genet ; 54(5): 660-669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35437329

RESUMO

The functions of the tumor microenvironment (TME) are orchestrated by precise spatial organization of specialized cells, yet little is known about the multicellular structures that form within the TME. Here we systematically mapped TME structures in situ using imaging mass cytometry and multitiered spatial analysis of 693 breast tumors linked to genomic and clinical data. We identified ten recurrent TME structures that varied by vascular content, stromal quiescence versus activation, and leukocyte composition. These TME structures had distinct enrichment patterns among breast cancer subtypes, and some were associated with genomic profiles indicative of immune escape. Regulatory and dysfunctional T cells co-occurred in large 'suppressed expansion' structures. These structures were characterized by high cellular diversity, proliferating cells and enrichment for BRCA1 and CASP8 mutations and predicted poor outcome in estrogen-receptor-positive disease. The multicellular structures revealed here link conserved spatial organization to local TME function and could improve patient stratification.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Neoplasias da Mama/patologia , Feminino , Genoma , Genômica , Humanos , Microambiente Tumoral/genética
8.
Nature ; 601(7894): 623-629, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875674

RESUMO

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy2. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.


Assuntos
Neoplasias da Mama , Ecossistema , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Genômica , Humanos , Aprendizado de Máquina , Terapia Neoadjuvante , Microambiente Tumoral
9.
PLoS Genet ; 17(11): e1009876, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762647

RESUMO

A PI3Kα-selective inhibitor has recently been approved for use in breast tumors harboring mutations in PIK3CA, the gene encoding p110α. Preclinical studies have suggested that the PI3K/AKT/mTOR signaling pathway influences stemness, a dedifferentiation-related cellular phenotype associated with aggressive cancer. However, to date, no direct evidence for such a correlation has been demonstrated in human tumors. In two independent human breast cancer cohorts, encompassing nearly 3,000 tumor samples, transcriptional footprint-based analysis uncovered a positive linear association between transcriptionally-inferred PI3K/AKT/mTOR signaling scores and stemness scores. Unexpectedly, stratification of tumors according to PIK3CA genotype revealed a "biphasic" relationship of mutant PIK3CA allele dosage with these scores. Relative to tumor samples without PIK3CA mutations, the presence of a single copy of a hotspot PIK3CA variant was associated with lower PI3K/AKT/mTOR signaling and stemness scores, whereas the presence of multiple copies of PIK3CA hotspot mutations correlated with higher PI3K/AKT/mTOR signaling and stemness scores. This observation was recapitulated in a human cell model of heterozygous and homozygous PIK3CAH1047R expression. Collectively, our analysis (1) provides evidence for a signaling strength-dependent PI3K-stemness relationship in human breast cancer; (2) supports evaluation of the potential benefit of patient stratification based on a combination of conventional PI3K pathway genetic information with transcriptomic indices of PI3K signaling activation.


Assuntos
Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Neoplasias da Mama/metabolismo , Feminino , Genótipo , Humanos
10.
Cancer Res ; 81(23): 6004-6017, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625424

RESUMO

Hyperpolarized 13C-MRI is an emerging tool for probing tissue metabolism by measuring 13C-label exchange between intravenously injected hyperpolarized [1-13C]pyruvate and endogenous tissue lactate. Here, we demonstrate that hyperpolarized 13C-MRI can be used to detect early response to neoadjuvant therapy in breast cancer. Seven patients underwent multiparametric 1H-MRI and hyperpolarized 13C-MRI before and 7-11 days after commencing treatment. An increase in the lactate-to-pyruvate ratio of approximately 20% identified three patients who, following 5-6 cycles of treatment, showed pathological complete response. This ratio correlated with gene expression of the pyruvate transporter MCT1 and lactate dehydrogenase A (LDHA), the enzyme catalyzing label exchange between pyruvate and lactate. Analysis of approximately 2,000 breast tumors showed that overexpression of LDHA and the hypoxia marker CAIX was associated with reduced relapse-free and overall survival. Hyperpolarized 13C-MRI represents a promising method for monitoring very early treatment response in breast cancer and has demonstrated prognostic potential. SIGNIFICANCE: Hyperpolarized carbon-13 MRI allows response assessment in patients with breast cancer after 7-11 days of neoadjuvant chemotherapy and outperformed state-of-the-art and research quantitative proton MRI techniques.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Isótopos de Carbono/análise , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Seguimentos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Taxa de Sobrevida
11.
Nat Commun ; 12(1): 5406, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518533

RESUMO

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Estudos de Coortes , Ilhas de CpG/genética , Replicação do DNA/genética , Feminino , Genoma Humano/genética , Instabilidade Genômica/genética , Genômica/métodos , Humanos , Células MCF-7 , Mutação , Regiões Promotoras Genéticas/genética , Análise de Sobrevida
12.
Sci Signal ; 14(688)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158398

RESUMO

Unlike early transcriptional responses to mitogens, later events are less well-characterized. Here, we identified delayed down-regulated genes (DDGs) in mammary cells after prolonged treatment with epidermal growth factor (EGF). The expression of these DDGs was low in mammary tumors and correlated with prognosis. The proteins encoded by several DDGs directly bind to and inactivate oncoproteins and might therefore act as tumor suppressors. The transcription factor teashirt zinc finger homeobox 2 (TSHZ2) is encoded by a DDG, and we found that overexpression of TSHZ2 inhibited tumor growth and metastasis and accelerated mammary gland development in mice. Although the gene TSHZ2 localizes to a locus (20q13.2) that is frequently amplified in breast cancer, we found that hypermethylation of its promoter correlated with down-regulation of TSHZ2 expression in patients. Yeast two-hybrid screens and protein-fragment complementation assays in mammalian cells indicated that TSHZ2 nucleated a multiprotein complex containing PRC1/Ase1, cyclin B1, and additional proteins that regulate cytokinesis. TSHZ2 increased the inhibitory phosphorylation of PRC1, a key driver of mitosis, mediated by cyclin-dependent kinases. Furthermore, similar to the tumor suppressive transcription factor p53, TSHZ2 inhibited transcription from the PRC1 promoter. By recognizing DDGs as a distinct group in the transcriptional response to EGF, our findings uncover a group of tumor suppressors and reveal a role for TSHZ2 in cell cycle regulation.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Citocinese , Proteínas de Homeodomínio/genética , Animais , Mama , Neoplasias da Mama/genética , Fator de Crescimento Epidérmico/genética , Feminino , Genes Supressores de Tumor , Humanos , Camundongos
13.
Cell Syst ; 12(5): 401-418.e12, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33932331

RESUMO

One goal of precision medicine is to tailor effective treatments to patients' specific molecular markers of disease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF in the presence or absence of five kinase inhibitors. These data-on more than 80 million single cells from 4,000 conditions-were used to fit mechanistic signaling network models that provide insight into how cancer cells process information. Our dynamic single-cell-based models accurately predicted drug sensitivity and identified genomic features associated with drug sensitivity, including a missense mutation in DDIT3 predictive of PI3K-inhibition sensitivity. We observed similar trends in genotype-drug sensitivity associations in patient-derived xenograft mouse models. This work provides proof of principle that patient-specific single-cell measurements and modeling could inform effective precision medicine strategies.


Assuntos
Neoplasias da Mama , Preparações Farmacêuticas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Genômica , Humanos , Camundongos , Transdução de Sinais
14.
Nat Commun ; 12(1): 1998, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790302

RESUMO

The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.


Assuntos
Benzamidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Xenoenxertos/efeitos dos fármacos , Morfolinas/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos/metabolismo , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento
15.
Breast Cancer Res ; 23(1): 21, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579347

RESUMO

BACKGROUND: FGFR1 amplification, but not overexpression, has been related to adverse prognosis in hormone-positive breast cancer (HRPBC). Whether FGFR1 overexpression and amplification are correlated, what is their distribution among luminal A or B HRPBC, and if there is a potential different prognostic role for amplification and overexpression are currently unknown features. The role of FGFR1 inhibitors in HRPBC is also unclear. METHODS: FGFR1 amplification (FISH) and overexpression (RNAscope) were investigated in a N = 251 HRPBC patients cohort and the METABRIC cohort; effects on survival and FISH-RNAscope concordance were determined. We generated hormonal deprivation resistant (LTED-R) and FGFR1-overexpressing cell line variants of the ER+ MCF7 and T47-D and the ER+, FGFR1-amplified HCC1428 cell lines. The role of ER, CDK4/6, and/or FGFR1 blockade alone or in combinations in Rb phosphorylation, cell cycle, and survival were studied. RESULTS: FGFR1 overexpression and amplification was non-concordant in > 20% of the patients, but both were associated to a similar relapse risk (~ 2.5-fold; P < 0.05). FGFR1 amplification or overexpression occurred regardless of the luminal subtype, but the incidence was higher in luminal B (16.3%) than A (6.6%) tumors; P < 0.05. The Kappa index for overexpression and amplification was 0.69 (P < 0.001). Twenty-four per cent of the patients showed either amplification and/or overexpression of FGFR1, what was associated to a hazard ratio for relapse of 2.6 (95% CI 1.44-4.62, P < 0.001). In vitro, hormonal deprivation led to FGFR1 overexpression. Primary FGFR1 amplification, engineered mRNA overexpression, or LTED-R-acquired FGFR1 overexpression led to resistance against hormonotherapy alone or in combination with the CDK4/6 inhibitor palbociclib. Blocking FGFR1 with the kinase-inhibitor rogaratinib led to suppression of Rb phosphorylation, abrogation of the cell cycle, and resistance-reversion in all FGFR1 models. CONCLUSIONS: FGFR1 amplification and overexpression are associated to similar adverse prognosis in hormone-positive breast cancer. Capturing all the patients with adverse prognosis-linked FGFR1 aberrations requires assessing both features. Hormonal deprivation leads to FGFR1 overexpression, and FGFR1 overexpression and/or amplification are associated with resistance to hormonal monotherapy or in combination with palbociclib. Both resistances are reverted with triple ER, CDK4/6, and FGFR1 blockade.


Assuntos
Neoplasias da Mama/etiologia , Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Expressão Gênica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Gerenciamento Clínico , Suscetibilidade a Doenças , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Estrogênio/metabolismo , Resultado do Tratamento , Adulto Jovem
16.
Int J Cancer ; 148(10): 2489-2501, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33423300

RESUMO

A 30-kb deletion that eliminates the coding region of APOBEC3B (A3B) is >5 times more common in women of Asian descent compared to European descent. This polymorphism creates a chimera with the APOBEC3A (A3A) coding region and A3B 3'UTR, and it is associated with an increased risk for breast cancer in Asian women. Here, we explored the relationship between the A3B deletion polymorphism with tumour characteristics in Asian women. Using whole exome and whole transcriptome sequencing data of 527 breast tumours, we report that germline A3B deletion polymorphism leads to expression of the A3A-B hybrid isoform and increased APOBEC-associated somatic hypermutation. Hypermutated tumours, regardless of A3B germline status, were associated with the Her2 molecular subtype and PIK3CA mutations. Compared to nonhypermutated tumours, hypermutated tumours also had higher neoantigen burden, tumour heterogeneity and immune activation. Taken together, our results suggest that the germline A3B deletion polymorphism, via the A3A-B hybrid isoform, contributes to APOBEC mutagenesis in a significant proportion of Asian breast cancers. In addition, APOBEC somatic hypermutation, regardless of A3B background, may be an important clinical biomarker for Asian breast cancers.

17.
Breast Cancer Res ; 23(1): 3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413557

RESUMO

BACKGROUND: NRG1 gene fusions may be clinically actionable, since cancers carrying the fusion transcripts can be sensitive to tyrosine kinase inhibitors. The NRG1 gene encodes ligands for the HER2(ERBB2)-ERBB3 heterodimeric receptor tyrosine kinase, and the gene fusions are thought to lead to autocrine stimulation of the receptor. The NRG1 fusion expressed in the breast cancer cell line MDA-MB-175 serves as a model example of such fusions, showing the proposed autocrine loop and exceptional drug sensitivity. However, its structure has not been properly characterised, its oncogenic activity has not been fully explained, and there is limited data on such fusions in breast cancer. METHODS: We analysed genomic rearrangements and transcripts of NRG1 in MDA-MB-175 and a panel of 571 breast cancers. RESULTS: We found that the MDA-MB-175 fusion-originally reported as a DOC4(TENM4)-NRG1 fusion, lacking the cytoplasmic tail of NRG1-is in reality a double fusion, PPP6R3-TENM4-NRG1, producing multiple transcripts, some of which include the cytoplasmic tail. We hypothesise that many NRG1 fusions may be oncogenic not for lacking the cytoplasmic domain but because they do not encode NRG1's nuclear-localised form. The fusion in MDA-MB-175 is the result of a very complex genomic rearrangement, which we partially characterised, that creates additional expressed gene fusions, RSF1-TENM4, TPCN2-RSF1, and MRPL48-GAB2. We searched for NRG1 rearrangements in 571 breast cancers subjected to genome sequencing and transcriptome sequencing and found four cases (0.7%) with fusions, WRN-NRG1, FAM91A1-NRG1, ARHGEF39-NRG1, and ZNF704-NRG1, all splicing into NRG1 at the same exon as in MDA-MB-175. However, the WRN-NRG1 and ARHGEF39-NRG1 fusions were out of frame. We identified rearrangements of NRG1 in many more (8% of) cases that seemed more likely to inactivate than to create activating fusions, or whose outcome could not be predicted because they were complex, or both. This is not surprising because NRG1 can be pro-apoptotic and is inactivated in some breast cancers. CONCLUSIONS: Our results highlight the complexity of rearrangements of NRG1 in breast cancers and confirm that some do not activate but inactivate. Careful interpretation of NRG1 rearrangements will therefore be necessary for appropriate patient management.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neuregulina-1/genética , Proteínas de Fusão Oncogênica/genética , Processamento Alternativo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Loci Gênicos , Humanos , Neuregulina-1/química , Neuregulina-1/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais , Translocação Genética
18.
Nat Commun ; 11(1): 6433, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353943

RESUMO

Molecular profiling of breast cancer has enabled the development of more robust molecular prognostic signatures and therapeutic options for breast cancer patients. However, non-Caucasian populations remain understudied. Here, we present the mutational, transcriptional, and copy number profiles of 560 Malaysian breast tumours and a comparative analysis of breast cancers arising in Asian and Caucasian women. Compared to breast tumours in Caucasian women, we show an increased prevalence of HER2-enriched molecular subtypes and higher prevalence of TP53 somatic mutations in ER+ Asian breast tumours. We also observe elevated immune scores in Asian breast tumours, suggesting potential clinical response to immune checkpoint inhibitors. Whilst HER2-subtype and enriched immune score are associated with improved survival, presence of TP53 somatic mutations is associated with poorer survival in ER+ tumours. Taken together, these population differences unveil opportunities to improve the understanding of this disease and lay the foundation for precision medicine in different populations.


Assuntos
Povo Asiático/genética , Neoplasias da Mama/genética , Genética Populacional , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Genoma Humano , Humanos , Mutação/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Sobrevida , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , População Branca/genética
19.
Cancer Cell ; 38(4): 516-533.e9, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32976773

RESUMO

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteína Forkhead Box M1/genética , Fulvestranto/administração & dosagem , Humanos , Imidazóis/administração & dosagem , Células MCF-7 , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oxazepinas/administração & dosagem , Receptores de Estrogênio/metabolismo , Tamoxifeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Nat Genet ; 52(9): 878-883, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747825

RESUMO

Response and resistance to anticancer therapies vary due to intertumor and intratumor heterogeneity1. Here, we map differentially enriched G-quadruplex (G4) DNA structure-forming regions (∆G4Rs) in 22 breast cancer patient-derived tumor xenograft (PDTX) models. ∆G4Rs are associated with the promoters of highly amplified genes showing high expression, and with somatic single-nucleotide variants. Differences in ΔG4R landscapes reveal seven transcription factor programs across PDTXs. ∆G4R abundance and locations stratify PDTXs into at least three G4-based subtypes. ∆G4Rs in most PDTXs (14 of 22) were found to associate with more than one breast cancer subtype, which we also call an integrative cluster (IC)2. This suggests the frequent coexistence of multiple breast cancer states within a PDTX model, the majority of which display aggressive triple-negative IC10 gene activity. Short-term cultures of PDTX models with increased ∆G4R levels are more sensitive to small molecules targeting G4 DNA. Thus, G4 landscapes reveal additional IC-related intratumor heterogeneity in PDTX biopsies, improving breast cancer stratification and potentially identifying new treatment strategies.


Assuntos
Neoplasias da Mama/genética , DNA/genética , Feminino , Quadruplex G , Regulação da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA